
Keyboard? How quaint.
Visual Dataflow Implemented in Lisp.

Donald Fisk
Barnet
Herts

England
hibou@onetel.com

ABSTRACT
Full Metal Jacket is a general-purpose, homoiconic, strongly-
typed, pure visual dataflow language, in which functions are
represented as directed acyclic graphs. It is implemented in
Emblem, a bytecode-interpreted dialect of Lisp similar to,
but simpler than, Common Lisp. Functions in Full Metal
Jacket can call functions in Emblem, and vice-versa. After
a brief language description, this paper describes the inter-
preter in detail, how iteration is handled, how the editor
handles type checking interactively, and how it detects race
conditions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Data-flow languages

General Terms
Languages

Keywords
Language design, dataflow, visual programming, Lisp

1. INTRODUCTION
In recent years, many new programming languages (e.g.
GoLang, Swift, Rust, Hack, etc.) have been released. As
none of these represents a radical departure from already
existing languages, it is understandable that the announce-
ment of the development of yet another programming lan-
guage might be greeted with a degree of skepticism.

However, Full Metal Jacket is fundamentally different from
any mainstream programming language (including Lisp), in
both its outward appearance and its internal computational
model. Instead of being expressed in text, its programs are
directed acyclic graphs drawn on a two-dimensional canvas,
and computations are run, whenever possible, in parallel,
with no central flow control. It is strongly typed yet it does
not have any variables, and has iteration but does not have
any loops. Programmers do not have to learn “yet another
syntax”: its syntax is not much more complex than Lisp’s,
and it has an integrated editor which not only is simple
to use, but also prevents syntax and type errors. Editing
is mostly done with the mouse, by dragging and dropping
program elements, and then joining them up. Early work
on Full Metal Jacket is described in [5].

Work on Full Metal Jacket only recently resumed after a
long break. In the meantime, the underlying Lisp dialect,

Emblem, has, however, undergone substantial improvements
which have made Full Metal Jacket implementation more
straightforward. These include better event handling, X11
graphics programming, and object orientation. Changes to
Emblem since [5] have, in general, moved it closer to Com-
mon Lisp, except that the object system has been simplified.

At present, Full Metal Jacket is interpreted. Ideally, it would
compile onto a dataflow machine if a suitable one existed.
(A prototype was built at the University of Manchester [6].
Others were designed by Kableshkov [9] and Papadopoulos
[12].) Alternatively, it could be compiled onto a more con-
ventional architecture, such as X86 or X86-64. Full Metal
Jacket does go one step further than Lisp in facilitating com-
pilation: not only is the parsing step trivial, optimizations
based upon dataflow are also made more straightforward.

When a program runs, values can be thought of as flowing
downwards along the edges which connect vertices, where
they are transformed. Some vertices contain nested enclo-
sures, in which data flows from ingates, down through ver-
tices, towards outgates.

The intention is for the language to interoperate with Lisp,
rather than to replace it. There is some evidence [8] that,
although dataflow excels at coarse-grained parallelism, its
high overhead makes it less suitable for parallelism at the
instruction level.

In this article, following some examples of simple programs,
the interpreter is described in some detail. Iteration, type
inference, and race condition detection are also covered.

2. RELATED WORK
Full Metal Jacket is not the only visual dataflow language.
Three others have been developed which have seen widespread
use, namely Prograph [2] which is general-purpose, MAX/MSP
[3] [4], which is designed for music and multimedia, and Lab-
VIEW [10] which is designed for programming instruments
and devices. Another system, Plumber [1], has been imple-
mented in Lisp. [8] contains a recent survey of many such
languages.

There are significant differences between Prograph and Full
Metal Jacket: in Prograph, type checking is not done un-
til run time; Prograph places more emphasis on object ori-
entation; then and else clauses (and cases) are in separate
windows; there is a ‘syncro’ edge which enforces execution



order; and garbage collection is by reference counting.

LabVIEW uses two separate windows: a front panel for user
interface objects (these are equivalent to Full Metal Jacket’s
constants), and a block diagram for code. It also requires
extra constructs for iteration and conditional code.

Max/MSP differs from Full Metal Jacket in that it is ex-
plicitly object-oriented (with dataflow as message passing);
allows feedback; does not comfortably support recursion; ex-
ecution order is sensitive to program layout; and triggers are
sometimes needed to guarantee execution order. Of these
three systems, Max/MSP is the least similar to Full Metal
Jacket.

3. A BRIEF DESCRIPTION OF THE LAN-
GUAGE

The simplest program, shown in Figure 1, displays the con-
stant ”Hello, world!” in a dialog box.

Figure 1: Hello, world!

In the program shown in Figure 2, 2.5sin(0.6) + 5.4 is cal-
culated.

Figure 2: A simple calculation

The dark blue square indicates that the result of + should
be output to a dialog box. Vertex inputs are shown as cir-
cles and are usually red, and vertex outputs are are shown
as squares and are usually green. The edge colors are config-
urable, and give some indication of type. Here, cyan ≡ Real.

The third inputs of * and + are called extra inputs. An extra
input allows additional arguments to be added by clicking on
it, and can also be used like Common Lisp’s &rest argument,
in which case it will be the head of an edge.

Figure 3 shows the code for myAppend, the canonical recur-
sive append. The surrounding square is an enclosure. In-
gates are at the top and outgates are at the bottom.

Figure 3: Recursive append.

when* outputs its second argument if its first is T, other-
wise it does not output anything. unless* does the oppo-
site. So, if myAppend’s first argument is NIL, when* outputs
myAppend’s second argument. Otherwise, unless* outputs
myAppend’s first argument, and decons splits it into its car

and cdr. The cdr and myAppend’s second argument then be-
come the inputs to myAppend, which is called recursively.
The car and the result of the recursive call are then consed
and returned.

Figure 4: Use of a constant enclosure.

Figure 4 shows the code for foo, and is the equivalent of the
Lisp

(defun foo (x y) (mapcar (lambda (z) (cons z x)) y))

The inner enclosure is a constant of the first argument of
mapcar, and is called as often as the length of foo’s (and



mapcar’s) second argument, yet it captures foo’s first argu-
ment precisely once. To make it available for more than one
call, it has been made sticky, which is why, like inputs with
constants, it is shown in black. Sticky values behave like
constants, but change when a new value reaches their input.

4. THE INTERPRETER
A simplified version of the interpreter code, written in Em-
blem, follows.

4.1 Interpreter Data Structures
Full Metal Jacket has four fundamental classes of objects:
Vertex, Constant, Edge, and Enclosure. three other classes:
Input, Output, and Gate, are used in constructing them.

A vertex has inputs, a function, and outputs. When a vertex
has values with the same tag1 on all of its inputs, it applies
its function to those values. The values returned by the
function are then sent with the same tag from the outputs.

(defclass Vertex (Any)
(function type Fun accessor functionOfVertex)
(inputs type List accessor inputsOfVertex)
(outputs type List accessor outputsOfVertex))

(defclass Socket (Any)
(edges type List accessor edgesOfSocket initForm ’()))

An input usually has a queue of tagged values, but may
instead have a sticky value, which is not consumed when
the vertex’s function is called, but changes when a different
value is received, unless it is a constant.

(defclass Input (Socket)
(vertexOrGate type Any accessor vertexOrGateOfInput)
(taggedValueQueue type Queue accessor taggedValueQueueOfInput)
(stickyValue type Any accessor stickyValueOfInput)
(hasStickyValue type Bool accessor inputHasStickyValueP

initForm NIL))

(defclass Output (Socket))

A constant is a value attached to an vertex’s input, which
does not change between function calls.

(defclass Constant (Any)
(input type Input accessor inputOfConstant))

An edge connects an output (its tail) to an input (its head).
Values notionally flow along edges from output to input.

(defclass Edge (Any)
(output type Output accessor outputOfEdge)
(input type Input accessor inputOfEdge))

Enclosures, which are an exact analogue of Lisp’s lambdas,
are used in defining new functions, and also used within

1Tags, which are used to distinguish different computations
which share the same vertex, are explained in detail in Sub-
section 4.2.

functions, to provide local scope. Each enclosure has ingates
and outgates. Within an enclosure, the outputs of ingates
are connected to inputs of vertices, and outputs of vertices
are connected to the inputs of other vertices, or the inputs
of outgates.

(defclass Enclosure (Any)
(ingates type List accessor ingatesOfEnclosure

initForm ’())
(outgates type List accessor outgatesOfEnclosure

initForm ’())
(tag type Int accessor tagOfEnclosure initForm 0))

Ingates and outgates are gates.

(defclass Gate (Any)
(enclosure type Enclosure accessor enclosureOfGate)
(input type Input accessor inputOfGate)
(output type Output accessor outputOfGate))

4.2 Interpreter Code
Vertices are executed asynchronously.

As soon as a vertex is ready to be executed by executeVertex,
it is added to the task queue. In the current system, tasks
are run by runNextTask in the order they appear on it.

(setf TASK_QUEUE (new Queue))

(defmacro makeTask (vertex tag args) ‘(list ,vertex ,tag ,args))

(alias vertexOfTask car)
(alias tagOfTask cadr)
(alias argsOfTask caddr)

(defun runNextTask ()
(let ((task (takeOffQueue TASK_QUEUE)))

(if task
(executeVertex (vertexOfTask task)

(tagOfTask task)
(argsOfTask task))

(write "TASK_QUEUE is empty!" $))))

(defun executeVertex (vertex tag argList)
(do ((args (mvList (apply (functionOfVertex vertex)

argList))
(cdr args))

(outputs (outputsOfVertex vertex) (cdr outputs)))
((null outputs))
(do ((edges (edgesOfSocket (car outputs))

(cdr edges)))
((null edges))
(sendValueToInput (inputOfEdge (car edges))

tag
(car args)))))

Values must be tagged.

Values intended as arguments of a vertex’s function are sent
to its inputs asynchronously, and possibly out of order, by
sendValueToInput, so it is essential to distinguish which
values belong to which invocation of the function. This is
achieved by accompanying each value intended for the same
invocation with the same unique tag, which can be an inte-
ger. Because tagged values have to be queued at the input if



the vertex is not ready to receive them, each input requires
a queue for holding them. When every input is found by
everyInputHasAValueP to have a value with the same tag,
the vertex is ready to be executed. Then extractValues-

FromInputs gets the input values, and putOnQueue adds a
task to the task queue.

(defun sendValueToInput (inputOfDest tag value)
;; If the destination input has a sticky value, change it
;; to the new value.
(if (inputHasStickyValueP inputOfDest)

(setf (stickyValueOfInput inputOfDest) value)
;; Otherwise, tag the value and add it to end of
;; the input’s tagged value queue.
(putOnQueue (taggedValueQueueOfInput inputOfDest)

(cons tag value)))
;; If the destination input belongs to a vertex,
;; rather than a gate, and it has values for all inputs
;; with the tag, schedule the vertex to be run
;; with those inputs.
(let ((dest (vertexOrGateOfInput inputOfDest)))

(when (and (instanceOf dest Vertex)
(everyInputHasAValueP (inputsOfVertex dest)

tag))
(putOnQueue TASK_QUEUE

(makeTask dest
tag
(extractValuesFromInputs
(inputsOfVertex dest)
tag))))))

(defun everyInputHasAValueP (inputs tag)
(every (lambda (input)

(or (and (eq (classOf input) ExtraInput)
(null (edgesOfSocket input)))

(inputHasStickyValueP input)
(assoc tag

(elemsOfQueue (taggedValueQueueOfInput
input)))))

inputs))

;;; This should only be called after verifying
;;; that the values are actually present. The use of mapcan
;;; permits the use of an extra arg.
(defun extractValuesFromInputs (inputs tag)
(mapcan (lambda (input)

(if (inputHasStickyValueP input)
(list (stickyValueOfInput input))

(let ((taggedValue
(assoc tag (taggedValueQueueOfInput input))))

(cond (taggedValue
(deleteFromQueue (taggedValueQueueOfInput

input)
taggedValue)

(list (cdr taggedValue)))
;; If there is no tagged or sticky value,
;; no value should be extracted.
(T NIL)))))

inputs))

Arguments must be imported into enclosures synchronously.

It might be thought that, if a vertex’s function is defined as
an enclosure, it would be possible to import individual input
values into the enclosure through their corresponding ingate
as soon as they arrive at the calling vertex, without waiting
for the other argument values to arrive. However, in general,
it is not possible, as when the function is recursively defined,
such a value could be transmitted immediately to a vertex
with the same enclosure as its definition. This value would
then be imported into the enclosure via the same ingate and
arrive at the vertex again, and again, and again. For ex-
ample, this would occur in myAppend (Figure 3). Therefore,
it is necessary to wait until all the arguments for a given

invocation, and therefore with the same tag, are available
before startng the enclosure call, although this might delay
execution at a few vertices. As it also has to be done when
vertex’s function is encoded in Lisp, the same mechanism
can be used in both cases.

(defun importArgsIntoEnclosure (enclosure tag args)
(mapc (lambda (arg ingate)

(do ((edges (edgesOfSocket (outputOfGate ingate))
(cdr edges)))

((null edges))
(sendValueToInput (inputOfEdge (car edges))

tag
arg)))

args
(ingatesOfEnclosure enclosure)))

The tags used in an enclosure are a property of the enclosure

and are unique to the enclosure’s invocation.

An invocation results in data flowing through an enclosure,
or outside any enclosure in the case of top-level computa-
tions (i.e. those taking place in the sandbox, Full Metal
Jacket’s equivalent of Lisp’s read-eval-print loop.) Each
invocation has its own tag for use in that enclosure (or sand-
box), supplied on entry.

While values are flowing through an enclosure during a par-
ticular invocation, they must all have the same tag, unique
to the invocation, in order for the vertices they encounter to
execute each time with the correct input data.

During an invocation, the same function might be called
from different vertices, each resulting in a different invoca-
tion of the same enclosure. In order to keep the compu-
tations for the different invocations separate, their values
must be provided with different tags when the enclosure is
entered, for use during their time in the enclosure. When the
enclosure is exited and the value(s) returned to the calling
vertex, the original tag on the data received by the vertex’s
inputs is restored.

As computations within different enclosures are physically
separate, there is no problem if they occasionally have the
same tag provided that tags are properties of their enclosure.

In applyEnclosure, each argument is given a new tag, unique
to the invocation, then transmitted along each edge leading
from its corresponding ingate.

applyEnclosure then waits until a value with the same tag
appears at each outgate, before returning those values.

The values returned are then transmitted along each edge
leading from the corresponding vertex output.

(defun applyEnclosure (enclosure args)
(let ((newTag (incf (tagOfEnclosure enclosure))))

(importArgsIntoEnclosure enclosure newTag args)
;; Wait for the values to appear at each outgate.
(do ((inputs (mapcar inputOfGate

(outgatesOfEnclosure enclosure))))
((everyInputHasAValueP inputs newTag)
(valuesList (extractValuesFromInputs inputs

newTag)))
;; Not there? Find something else to do.
(runNextTask))))



Functions defined as enclosures in Full Metal Jacket can be

called from Lisp.

When a tagged value is sent to a vertex’s input, it is put on
its tagged value queue. Then, if all the inputs either have an
attached constant, or a value in their queue with the same
tag, those values are removed from their respective queues
to comprise, along with any constants, the argument list.
The vertex’s function is then applied to the argument list,
by calling apply if the function was written in Lisp.

If the function was implemented as an enclosure, applyEn-
closure, Full Metal Jacket’s analogue of apply, is called
instead. The arguments to applyEnclosure are the enclo-
sure and the enclosure’s inputs.

For example, the definition in Emblem of myAppend, gener-
ated automatically when the enclosure is saved, is

(defun myAppend (x y)
(applyEnclosure (get ’myAppend ’enclosure) (list x y)))

5. ITERATION
when* and unless* are unusual because, unlike functions,
they do not always output a value exactly once when in-
voked. This suggests that the function concept might be
generalized to include, in addition to ordinary functions,
not only boolean operators like when* and unless*, but also
emitters, which can output more than once per invocation,
and collectors, which can accept inputs more than once be-
fore outputting.

Figure 5 illustrates the function iterReverse, which re-
verses its first argument onto its second. If its inputs are
’(a b c) and NIL, the values at various stages of the com-
putation are shown in Table 1.

Output 2nd Input 3rd Input Accumulator Output
of strip* of collectUntil*
(a b c) a NIL NIL

(a)

(b c) b NIL (b a)

(c) c T (c b a) (c b a)

Table 1: Iteration in iterReverse

Emitters and collectors typically work in tandem, with emit-
ters sending values and collectors receiving those values, or
data computed from them, and accumulating them in some
manner, until a boolean input changes value, at which point
they output their result. Here, strip* repeatedly sends a
list, stripping off one element at a time, and, after initializ-
ing its accumulator to NIL, collectUntil* receives the car

of each of these lists, and conses it onto its accumulator
(a local storage area), outputting its value after strip* has
sent all its outputs.

As tagged values are queued, when an emitter is connected
to a collector, the collector will process values in the order
they were sent by the emitter. This ensures that there is no
problem in the collector repeatedly receiving values with the
same tag, provided care is taken that it receives the same

number of values on its other inputs, except when they are
sticky.

The emitters and collectors available to the programmer are
still, at present, not settled, and it will require further ex-
perimentation before a final selection can be made. One
option is to make them compatible with Waters’s Series or
Curtis’s Generators and Gatherers [13], to which they bear
some similarity.

Figure 5: Iterative Reverse.

6. TYPES AND TYPE INFERENCE
Like ML and Haskell, Full Metal Jacket has a Hindley-Milner
type system [7] [11], but types are inferred incrementally,
and entirely interactively, when edges and constants are
added or deleted in the editor, in the course of function
definition.

At present (but see subsection 8.1), types in Full Metal
Jacket must be defined in Emblem, and are not yet fully
integrated into Emblem’s object system. Arguments and
return values of functions in Emblem, and therefore inputs
and outputs of vertices in Full Metal Jacket, are typed.

Composite types can be parameterized, allowing their ele-
ment types to be specified or inferred, e.g. a list of unknown
items can be declared as (List ?x) and a list of integers as
(List Int).

Examples of type definitions are:

(deftype (List ?x) (or NIL (Pair ?x (List ?x))))
(deftype (AList ?x ?y) (List (Pair ?x ?y)))
(deftype (Bag ?x) (AList ?x Int))
(deftype (TaggedValueQueue ?x) (Queue (Pair Int ?x)))

The types of inputs and outputs are displayed in Full Metal
Jacket’s editor when the pointer is placed over them. When-
ever an attempt is made to connect an output, or add a



constant, to an input, the types are checked, and unless the
output’s type matches the input’s type, the programmer is
prevented from making the connexion or adding the con-
stant. Successful matches can result in type variables being
bound (by means of a process similar to Prolog’s unifica-
tion), or types made more specific. Type matching and in-
ference occur while the program is being edited, every time
an edge is added, and also when one is deleted, in which case
the type variable might again become undetermined.

6.1 Type Matching Algorithm
The basic type-matching algorithm matches an edge’s out-
put type to its input type, resulting in either a list of bind-
ings for the variables contained in the types if the match is
successful, or the symbol FAIL.

The cases are:

A. Match of two type constants. This results in either suc-
cess (NIL) if the output type is equal to or a subtype of
the input type, or failure (FAIL) otherwise.

B. Match with a type variable. The match results in a new
binding unless the match is with the same variable, in
which case NIL is returned.

C. Match of two function types. The match is then applied
to the argument and return types.

D. Match with the same parameterized type. The parame-
ters are matched recursively.

E. Match with a different parameterized type. If one is
a subtype of the other, the match is repeated using the
more specific type’s definition, after the appropriate vari-
able substitutions. Otherwise, the match fails.

Case Output type Input type Bindings
A List Str FAIL

A Str Str NIL

B Str ?x ?x → Str

B (List ?x) ?y ?y → (List ?x)

B ?x ?x NIL

B ?x ?y ?y → ?x

D (List Int) (List ?x) ?x → Int

E (Bag Sym) (List ?x → Int

(Pair ?y ?x)) ?y → Sym

Table 2: Type matching examples

The output of the matcher is the list of bindings for the type
variables of the edge’s output and input. (See Table 2.)

6.2 Type Inference
Type inference is performed whenever an edge or constant
is connected to an output, as follows:

A. If there are any type variables shared between an edge’s
output and input, unique variables are substituted for
them before matching. For example, if output type (Bag
?x) and input type (List (Pair ?y ?x)) are matched,

the type variables are renamed, giving (e.g.) (Bag ?17)

and (List (Pair ?18 ?19)).

B. Matching is then performed. The bindings returned by
the match algorithm described above are ?19 → Int, ?18
→ ?17.

C. The bindings for the output and input types are then
separately extracted, giving NIL and ?19 → Int, ?18 →

?17 respectively.

D. Finally, the original names replace the substitute names,
giving NIL and ?x → Int, ?y → ?x respectively.

E. Type variables are shared among a vertex’s input and
output types, so if one becomes bound to a particular
value on an input or output, it also becomes bound to
the same value on all other inputs and outputs on the
same vertex.

F. When the type of an input or output changes, type in-
ference is applied along the edges connected to them.

Figure 6: Code for Pascal’s triangle.

6.3 An Example
pascal, shown in Figure 6, computes Pascal’s triangle. For
example, (pascal 5) returns ((1 4 6 4 1) (1 3 3 1) (1

2 1) (1 1) (1)).

pascal takes an Int as input. Here, the types of the values
are inferred statically.

Given the vertex input and output types shown in Table 3,
the edge types to be matched will be those shown in Table
4. Together with the types of the constants (shown in Table



5), the types of all the variables can be inferred, and this is
shown in Table 6.

Input Types Function Output Types
Int pascal ?a

(List ?b) car ?b

?c

(List ?c) consa (List ?c)

(List ?d) reverse (List ?d)

(?e ?f) → (?g)

(List ?e) map2 (List ?g)

(List ?f)

?h

(List ?h) consb (List ?h)

Table 3: Vertex types in pascal

Function Output Type Input Type Function
pascal ?a (List ?b) car

car ?b (List ?c) consa
consa (List ?c) (List ?d) reverse

consa (List ?c) (List ?e) map2

reverse (List ?d) (List ?f) map2

map2 (List ?g) ?h consb
pascal ?a (List ?h) consb

Table 4: Edge types in pascal

Value Type Input Type Fn.
0 Int ?c consa
iAdd (Int Int) → (Int) (?e ?f) → (?g) map2

Table 5: Constant types in pascal

Type Variable Type
?a (List (List Int))

?b (List Int)

?c Int

?d Int

?e Int

?f Int

?g Int

?h (List Int)

Table 6: Inferred types in pascal

This, reassuringly, is consistent with the types returned in
the other two paths through the pascal function, which re-
turn NIL and ’((1)).

7. RACE CONDITION DETECTION
Race conditions occur when two or more values are written
to the same memory location. The final value then depends
on the order in which they are written, which is unsatisfac-
tory. In Full Metal Jacket, if more than one edge is con-
nected to the same input, a potential race condition occurs.
Whether it is a true race condition can be detected fairly
straightforwardly.

Data follows one out of one or more mutually exclusive
streams through an enclosure. The stream containing a
given vertex can be found by searching downstream from
it along the edges leaving its outputs, and then back up-
stream at each vertex encountered, along its edges, marking
the vertices as we go. All those vertices, and any edges con-
necting them, are then on the same stream. If data flow
through a vertex, data also must be flowing through other
vertices in the same stream on the same enclosure invoca-
tion. When two or more edges converge on the same input,
and they are from vertices in the same stream, there is a
race condition, and one of the edges should be disallowed.

The stream detection mechanism also solves a well-known
problem with visual programming: how to remove clutter.
Functions do not have to become very large before they be-
come difficult to read, due to many edges crossing each other.
Within the editor, clicking on a particular vertex hides all
the vertices and edges except those in the same stream.

A further use for stream detection is in detecting gaps in
unit test coverage.

8. CONCLUSIONS AND FUTURE WORK
Development of Full Metal Jacket is still incomplete. While
it is already possible to implement and run some small pro-
grams containing nested function calls, others programs have
been found to be difficult to implement without important
features still absent from the language: in particular, the
ability to extend the type system from within the language,
and a more comprehensive set of emitters and collectors.

The ability to take advantage of the language’s homoiconic-
ity should also be added. Other features missing from Full
Metal Jacket’s environment include a compiler (initially, gen-
erating Emblem bytecode, for programmer-selected func-
tions), and interactive debugging capabilities.

Learning to think in a dataflow language should not be con-
sidered a problem, but a worthwhile challenge, also present
in any other programming paradigm switch.

8.1 Type and Class Hierarchy Extension
At present, the Emblem class hierarchy is displayed as a tree
(Emblem has single inheritance), with each class displayed
as a vertex, but this cannot yet be extended from inside Full
Metal Jacket. Types and classes should ideally be merged,
with the system capable of handling the two different ways
of extending them: adding fields to objects, and abstract-
ing and making types more specific. For example, the class
hierarchy contains

Any → Graphical → Shape → Rectangle

Any → Queue

These are defined by adding extra fields. It should also be
possible to define a type hierarchy, which would contain (see
Section 6)

Pair → List → AList → Bag

Queue → TaggedValueQueue

The subtypes above share the underlying data structure of



their parent types, the cons-cell and Queue respectively, but
a List requires its cdr also to be of type List, an AList

requires all of its elements to be Pairs, and a Bag requires
the cdr of each of its elements to be Int. Similarly, a tagged
value queue is a Queue of Pairs, of which the car is an
Int. (A Queue is an object containing a pointer to a list of
elements, and a pointer to their last cons-cell. Alternatively,
it could have been implemented by subtyping Pair.)

It will be noticed that Emblem’s typedef macro (see Sec-
tion 6) resembles Scheme’s define macro when that is used
to define functions, suggesting that types be defined graphi-
cally in Full Metal Jacket as enclosures, with more primitive
types as vertices and type variables as gates. This hints at
a deep equivalence between code and data.

8.2 Homoiconicity
Until now, Lisp and Prolog, and only those languages, have
been meaningfully homoiconic, i.e. able to treat code writ-
ten in them as data, transform it, and reason about it, and
to treat data as code, and execute it. Lisp macros are the
most widespread use of this, but more generally, code can be
generated on the fly (data becomes code) or reasoned about
(code becomes data).

A Full Metal Jacket program is a directed graph, which is
the most general data structure. The intention is to exploit
this feature, similar to how Lisp uses lists, and Prolog uses
terms, to represent both programs and data. However, it is
less straightforward: directed graph elements have a more
complex structure, and are more specific to code. While
this does not preclude the incorporation of macros into the
language, use of the same structures for data might seem
less natural. Vertices, edges and enclosures can, however,
be generalized to objects without the program-specific fields
(such as tagged value queues and types), and then special-
ized by restricting inputs and outputs each to one. This has
already been done with classes, so the class hierarchy can be
displayed as a tree.

9. REFERENCES
[1] Seika Abe. Plumber - A Higher Order Data Flow

Visual Programming Language in Lisp International

Lisp Conference, 2012.

[2] P.T. Cox. Prograph: a step towards liberating
programming from textual conditioning. In
Proceedings of the 1989 IEEE Workshop on Visual

Programming, 1989.

[3] Peter Elsea. Max and Programming (July 2007)
Retrieved 3rd March 2015 from http://peterelsea.

com/Maxtuts_advanced/Max&Programming.pdf

[4] Peter Elsea. Messages and Structure in Max Patches
(February 2011) Retrieved 3rd March 2015 from
http://peterelsea.com/Maxtuts_advanced/

Messages%20and%20Structure.pdf

[5] Donald Fisk. Full Metal Jacket: A Pure Visual
Dataflow Language Built on Top of Lisp. International
Lisp Conference, 2003.

[6] J.R. Gurd, C.C. Kirkham, and I. Watson. The
manchester prototype dataflow computer.
Communications of the ACM, 28:34–52, 1985.

[7] R. Hindley. The Principal Type-Scheme of an Object

in Combinatory Logic. Transactions of the American

Mathematical Society, 146:29–60, 1969.

[8] W. M. Johnston, J.R. Paul Hanna, and R.J. Millar.
Advances in Dataflow Programming Languages. ACM
Computing Surveys, Vol. 36, No. 1, March 2004.

[9] S. O. Kableshkov. Anthropocentric Approach to
Computing and Reactive Machines. John Wiley and

Sons Ltd, 1983.

[10] J. Kodosky. Visual programming using structured
dataflow. In Proceedings of the IEEE Workshop on

Visual Languages, 1991.

[11] Milner, R. A Theory of Type Polymorphism in
Programming Journal of Computer and System

Science, 17:348–374, 1978.

[12] G. M. Papadopoulos. Implementation of a General
Purpose Dataflow Multiprocessor. LCS TR-432. PhD
thesis, MIT, Laboratory for Computer Science, August
1988.

[13] Guy Steele. Common Lisp: The Language. Second

Edition Digital Press, 1990.


