
Full Metal Jacket: A Pure Visual Dataflow Language Built
on Top of Lisp.

Donald Fisk
England

United Kingdom

hibou at onetel dot com

ABSTRACT
Full Metal Jacket is a general-purpose visual dataflow lan-
guage currently being developed on top of Emblem, a Lisp
dialect strongly influenced by Common Lisp but smaller and
more type-aware, and with support for CLOS-style object
orientation, graphics, event handling and multi-threading.

Methods in Full Metal Jacket Jacket are directed acyclic
graphs. Data arriving at ingates from the calling method
flows along edges through vertices, at which it gets trans-
formed by applying Emblem functions or methods, or meth-
ods defined in Full Metal Jacket, before it finally arrives at
outgates where it is propagated back upwards to the calling
method.

The principal difference between Full Metal Jacket and ex-
isting visual dataflow languages such as Prograph is that Full
Metal Jacket is a pure dataflow language, with no special
syntax being required for control constructs such as loops
or conditionals, which resemble ordinary methods except in
the number of times they generate outputs. This uniform
syntax means that, like Lisp and Prolog, methods in Full
Metal Jacket are themselves data structures and can be ma-
nipulated as such.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Data-flow languages

General Terms
Languages

Keywords
Language design, dataflow, visual programming, Lisp

1. INTRODUCTION
To date, many hundreds of different programming lan-

guages have been developed. However, the space of possi-
ble programming languages has not been evenly explored.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ILC2003 2003 New York, USA
Copyright 2003 Donald Fisk .

Historically, most of the effort has centred around Algol
derivatives, i.e. structured imperative languages recently
augmented with object orientation (e.g. C++, Java, C#).
Other language categories where effort has been concen-
trated include functional languages, object oriented languages,
and the so-called scripting languages. (Common Lisp could
be categorized either as functional or multi-paradigm.) It
is the author’s view that there is now limited scope for im-
provement within these categories, so it has become worth-
while to investigate alternatives.

One property all these categories share is that they are
text-based, and consequently one-dimensional. However, al-
gorithms in general can have several computations occur-
ring concurrently, and therefore are arguably more naturally
represented in two dimensions, as directed graphs. Visual
dataflow languages, in which programs are represented in
this form, have existed for some time, but there are rela-
tively few of them and it is the author’s opinion that there
is scope for improvement over existing visual dataflow lan-
guages.

Full Metal Jacket, a visual dataflow language, is currently
being implemented in Emblem (a Lisp dialect developed by
the author), principally as an exercise in programming lan-
guage design, but also to prove (or test) the usability (and
habitability) of Emblem. Although Full Metal Jacket is still
in a very early stage of development, and it remains un-
certain whether it will prove to be useful in its own right,
some important conclusions and design decisions about vi-
sual dataflow programming have been made, which are the
subject of this paper.

2. HISTORICAL PERSPECTIVE
The author’s interest in dataflow dates back to the early

1980s. At the time, the Japanese had just announced their
Fifth Generation Project [13], and in particular the proposed
adoption of highly parallel machine architectures based around
the concept of dataflow. Such architectures had already
been the subject of active research in the West for several
years, a working prototype having been built at the Univer-
sity of Manchester [7]. Other research included a dataflow
machine simulator developed at Burroughs in Cumbernauld
by Stoyan Kableshkov [9], and work at MIT [14].

The high-level languages used or proposed for dataflow
machines at the time were not a particularly good fit for the
hardware. The Manchester Dataflow Group selected SISAL,
the Japanese planned to use a variant of Prolog. However,
although mapping of these onto dataflow hardware was by
no means trivial, no attempt was made as part of the Fifth



Generation Project to develop a graphical language in which
the dataflow could be represented explicitly, in large part no
doubt due to the high cost of good graphics terminals at the
time.

Since the start of the Fifth Generation Project, Moore’s
Law has remained valid, so processors are now roughly 1000
times faster with comparable improvements in memory size,
as well as improvements in graphical displays. This meant
that there was a reduction in pressure to develop highly
parallel computers, and as a result research into dataflow
computer architectures ceased to be fashionable. However,
recently there has been a considerable resurgence of interest
in parallel distributed computing centred around The Grid
[6].

Independently of the Fifth Generation Project and other
dataflow computer projects, some dataflow programming
languages, both general purpose (e.g. Prograph [4]) and
special purpose (e.g. Labview [10]), were developed [8].

3. THE IMPLEMENTATION LANGUAGE
Full Metal Jacket is built on top of Emblem, a Lisp imple-

mentation, and most of its power resides in this underlying
Lisp. Emblem has four design goals:

• to minimize the effort required to implement Full Metal
Jacket;

• to be embeddable within Full Metal Jacket;

• to be small;

• not to diverge too much from Common Lisp.

Because there is a close correspondence between constructs
in the two languages, it has been possible to keep Full Metal
Jacket small, with most of the overall development effort
going into writing Emblem itself. In particular, there is no
need to provide separate library code for Full Metal Jacket
where Emblem’s library code can be used instead. It is pos-
sible to build a system in a mixture of the two languages,
and call Emblem from Full Metal Jacket and vice-versa.

However, Full Metal Jacket is more than just a visual
programming interface for an underlying Lisp – as will be
shown below, it is a programming language in its own right.
Instead, it was Emblem which was originally designed to be
the underlying Lisp for Full Metal Jacket (rather than out
of any dissatisfaction with Common Lisp), analogous to the
Lisps embedded in Emacs, AutoCAD and Abuse. Emblem
has since proven useful in its own right.

4. THE COMPUTATIONAL MODEL
In Full Metal Jacket, programs are directed graphs, i.e.

vertices with attached methods or functions, connected by
edges. Each vertex has one or more inputs and zero or more
outputs. An edge connects a vertex output on one vertex to
a vertex input on another vertex.

Values flows along edges from tail (a vertex output) to
head (a vertex input), and when all the inputs of a vertex
have received values, they are normally consumed, and its
method or function is applied to them to produce output
values, which are then propagated onwards to another ver-
tex’s inputs. Values can therefore be thought of as flowing
along edges and being transformed at vertices.

Both vertex inputs and vertex outputs are typed, the
types corresponding to the types of the underlying method
or function. It is impossible (i.e. prevented by the graph
editor) to connect a vertex output to a vertex input of an
incompatible type.

Function or methods can be defined as directed graphs
whose ingates represent the function or method’s lambda
list, and whose outgates represent the values returned. Such
directed graphs are called λ-graphs. Each ingate and out-
gate has a single input and output. The outputs of ingates
are connected to inputs of vertices, and the outputs of ver-
tices can be connected to the inputs of either other vertices
or outgates.

Because methods can be called in several places, and can
be called recursively, it is necessary to tag values so that
only corresponding input values (those with the same tag)
are provided as arguments when the underlying function or
method is called. Tags have integer values and are generated
when a λ-graph is entered, for use within the λ-graph.

A problem arises with respect to the representation of con-
ditional and iterative evaluation. Two solutions are being
adopted with the choice, which depends on the details of the
computation being performed, left to the programmer. The
first solution is completely general and is similar to what is
done in Smalltalk. This is to encapsulate conditionals and
iteration in higher order functions or methods implemented
in Emblem, e.g.

(defun =if= ((test Bool) (then Fun) (else Fun))

(returns Any)

(funcall (if test then else)))

(defun =while= ((test Fun) (body Fun))

(returns)

(do ()

((not (funcall test)))

(funcall body)))

An example of its use in Full Metal Jacket is shown in
Figure 1. In Emblem, this would be written as

(defun fac ((n Int))

(returns Int)

(=if= (zerop n)

(lambda () 1)

(lambda () (* n (fac (sub1 n))))))

The second approach involves generalizing the behaviour
of the vertices so that they do not all produce exactly one set
of output values for each set of input values they consume.
For example, when only outputs if one of its inputs receives
the value TRUE, unless if one of its inputs receives FALSE,
count repeatedly outputs an integer counter from a lower
bound to an upper (or vice-versa), and collect repeatedly
receives inputs (e.g. from count) and processes them until
a condition is satisfied (see Figure 2 for an illustration of
its use). This can also be used to retrieve values from a
producer, such as a queue or file. This second approach is
similar to Common Lisp series, and like series, is not com-
pletely general.

Both the above approaches are pure dataflow, in contrast
to those taken in Prograph and Labview.

4.1 Implications for the Implementation Lan-
guage



Figure 1: Recursive factorial using a Smalltalk-style

conditional.

Figure 2: Iterative factorial. count outputs repeat-

edly, collect accumulates the values.

The computational model imposes, or at least makes de-
sirable, certain constraints on the implementation language:

• all arguments and return values should have declarable
types (undeclared types defaulting to Any), accessible
to the programmer;

• types should be unambiguous, e.g. FALSE and ’()
should be distinguishable;

• multi-threading (with non-blocking I/O) should be sup-
ported.

Multiple values and additional arguments are also require-
ments.

5. THE PROGRAMMER INTERFACE
In designing a programmer interface for a visual program-

ming language, it is important to ensure that expressing an
algorithm in it is less effort than typing in the same algo-
rithm in a text-based language.

In practice, this means minimizing the number of mouse
gestures and keystrokes required, and ensuring similar ac-
tions are used to perform similar operations.

To define a new function, you double click on a window,
then enter the name of the function into a dialog box. A
window is displayed, containing an empty λ-graph, in which
the function can be defined.

To add a gate (ingate or outgate), you click on a special
gate called a rest gate. A rest ingate also functions to accept
the remaining arguments of the function being defined. To
assign a type to a gate, you right click on its input and
then click to select the class from the class hierarchy, which
is displayed in a separate window. The class hierarchy is
displayed as a directed graph using the same widget set as
is used in programs.

To connect an output of an ingate or a vertex to an input
of a vertex already in the λ-graph or an outgate, you press
the mouse on the output and drag it in the general direction
of the input. When a line appears connecting the desired
pair, you release the mouse. Normally, you can only connect
to an input of the same type or a more general type. If the
vertex you intend to connect to has not yet been added
to the λ-graph, you right click on the output, and a new
window opens containing all the vertices you can connect to
(i.e. which can accept a value from the output). You then
drag the vertex you want into the λ-graph. If there is no
ambiguity as to which of its inputs can be connected to, the
connexion is made automatically.

To add a λ-graph, you press the mouse on an empty point
on the window, drag south-east and release.

Sometimes it is required that an input to a vertex have
a constant value, and this is entered by pressing the mouse
on the input, dragging up and releasing it. The value can
then be entered into, or selected from, a dialog box. This
is a special case of a sticky input – one whose value is not

consumed when the outputs are produced. It is also possible
to make an input sticky whose value arrives from another
vertex, by clicking on the input. It is possible to connect
a input which accepts functions to a λ-graph, by dragging
back from the input to a corner of the λ-graph.

A vertex’s documentation string is displayed by hovering
over it with the mouse. This is also used to display the types
of inputs and outputs.



An object can be deleted by pressing the mouse button
on it and dragging it to an icon, and releasing it. Objects
which depend on the object being deleted (e.g. edges joined
to a vertex being deleted) are also deleted.

An important part of the programmer interface consists
of the concepts which have to be understood to work within
the language. As it is a good design principle not to increase
the number of concepts unnecessarily (Occam’s razor), the
concepts of Full Metal Jacket are inherited from Lisp and
graph theory.

5.1 Implications for the Implementation Lan-
guage

The programmer interface outlined above imposes certain
further constraints on the implementation language:

• good graphics and event handling;

• object orientation. Since it makes the programmer
interface more complicated to have privileged argu-
ments, multiple dispatch is preferable to message pass-
ing.

• the set of all functions and methods taking an argu-
ment of a given type should be accessible to the pro-
grammer.

• in addition to arguments and return values, documen-
tation strings should also be accessible to the program-
mer;

The graphics system used for implementing Full Metal
Jacket is Mistletoe, which was implemented as part of Em-
blem on top of Xlib. In Mistletoe, shapes are normally repre-
sented as objects, and contain the code that determines their
behaviour in response to mouse gestures and other events.

6. PROGRAMS AS DATA
Programs in Full Metal Jacket are directed graphs. In the

process of providing the ability to enter and edit programs,
graph processing primitives had to be implemented. And
since directed graphs are a completely general data struc-
ture, it makes sense to provide access to those primitives to
Full Metal Jacket programmers, so that they can use them
to manipulate data in the form of directed graphs, just as
car, cdr, cons, etc. are available to Lisp programmers to
manipulate lists.

This raises the possibility of adding macros to Full Metal
Jacket. A macro’s definition would contain code which gen-
erates code to replace invocations of the macro, just like
Lisp macros except for the type of data structure they oper-
ate on. It might also be possible to automatically generate
fragments of code at run time.

One disadvantage directed graphs have over (singly linked)
lists is that adding an edge or vertex (the equivalent of cons),
to be side-effect free, requires graphs to be represented as a
list of vertices and edges. This means that executing a graph
involves frequent list traversals to deliver data to its intended
destination. The alternative, which is adopted in the current
implementation, is to represent graphs as graphs, and live
with side-effects. The expectation is that most graph mod-
ifying operations are done during graph construction where
side-effects are not a problem.

Figure 3: Allocation of tasks to other processes by

the master process.

7. PARALLEL PROCESSING
Programs which do Multiple Instruction, Multiple Data

(MIMD) parallel processing in conventional languages, using
message passing systems such as MPI, are troublesome to
implement. Much of the responsibility for synchronization
and load balancing rests with the programmer.

With dataflow, this responsibility can be offloaded onto
the system developer. Synchronization is handled automat-
ically: a vertex waits until it has received all of its inputs
before executing. Load balancing can be achieved with the
use of an intelligent scheduler.

A possible distributed scheduling algorithm is outlined in
the dataflow illustrated in Figures 3, 4 and 5. In Figure
3, two queues are repeatedly read from, one containing the
next task to be run, the other containing the identity of
a processor which is ready to run it. If a queue empties,
removeEachElem blocks, and if values arrive at sendTask at
different rates, the extra values are simply queued. Figure
4 illustrates how the free processor queue is filled. Most of
the complexity in processing is hidden in deliverValues. In
Figure 5, a process repeatedly receives tasks from the master
process, executes them and returns the results to the master
process. The processes can be distributed and/or running
on separate processors.

8. ARTIFICIAL INTELLIGENCE
There are two complementary approaches to AI that have

achieved some degree of success. The first, sometimes called
Good Old Fashioned AI (GOFAI), relies on making infer-
ences from aggregations of symbolic expressions, and con-
sequently is best implemented in Lisp or Prolog. A good
example of GOFAI is the work done by Doug Lenat on AM
[5], Eurisko [11], and Cyc [12]. Those working on GOFAI
could be criticized for designing “brains in vats” with no
direct contact with the physical world.

The second approach (subsumption architecture) func-
tions at a lower level, and most of the effort has gone into
modelling the non-cognitive aspects of behaviour, and into
building robots. A good example of subsumption architec-
ture is the work done by Rodney Brooks on various robots
[2], including Cog [3]. (Neural networks are also usually
considered AI and also function at a “precognitive” level.)
Those working on subsumption architecture or neural net-
works live in hope that somehow cognition will “emerge”



Figure 4: Receipt of results by the master process

from other processes, and their delivery to their des-

tination vertices.

Figure 5: Processing of tasks by other processors.

from these systems.
It would be worthwhile investigating whether a combina-

tion of the two approaches might work better than either
alone, and whether use of a dataflow language such as Full
Metal Jacket might be the best way to combine them. Sub-
sumption architectures depend very much on modules which
perform processing on inputs received either from sensors or
other modules, and which sending outputs either to other
modules or to actuators (see, for example [1]). In other
words, they already perform dataflow, so a language like
Full Metal Jacket seems ideally suited. GOFAI can also be
done because Full Metal Jacket maps onto Lisp.

But perhaps the most important point is this: the brain
is a very large dataflow computer.

9. CONCLUSIONS
Although development of Full Metal Jacket is in a very

early stage and firm conclusions about it cannot be reached
yet, the combination of dataflow and Lisp in the same sys-
tem, and the potential use of directed graphs as a data struc-
ture, seem promising.

The project has already proven to be a useful testing
ground for ideas about design of dataflow systems, graphical
user interfaces and Lisp; in particular, it has demonstrated
the value of CLOS-style object orientation and multi-threading.
Use of Mistletoe, with graphical objects containing the code
which determines their behavior, has enabled the code to be
more modular and better structured.

An important lesson for the Lisp community is that it is
important to build graphics, multi-threading, and other re-
quirements of modern computing systems into Lisp distribu-
tions for programmers to customize for their own purposes.

10. REFERENCES
[1] R. A. Brooks. A robust layered control system for a

mobile robot. IEEE Journal of Robotics and

Automation, RA-2(1):14–23, March 1984.

[2] R. A. Brooks. Fast, cheap and out of control: A robot
invasion of the solar system. Journal of the British

Interplanetary Society, 42:478–485, 1989.

[3] R. A. Brooks, C. Breazeal, M. Marjanovic,
B. Scassellati, and M. M. Williamson. The cog
project: Building a humanoid robot. Lecture Notes in

Computer Science, 1562:52–87, 1999.

[4] P. T. Cox. Prograph: a step towards liberating
programming from textual conditioning. In
Proceedings of the 1989 IEEE Workshop on Visual

Programming, 1989.

[5] R. Davis and D. B. Lenat. Knowledge-Based Systems

in Artificial Intelligence. McGraw-Hill, 1982.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: Enabling scalable virtual organizations.
Lecture Notes in Computer Science, 2150:1–??, 2001.

[7] J. R. Gurd, C. C. Kirkham, and I. Watson. The
manchester prototype dataflow computer.
Communications of the ACM, 28:34–52, 1985.

[8] D. D. Hils. Visual languages and computing survey:
Data flow visual programming languages. Journal of

Visual Languagse and Computing, 3:69–101, 1992.

[9] S. O. Kableshkov. Anthropocentric Approach to

Computing and Reactive Machines. John Wiley and
Sons Ltd, 1983.



[10] J. Kodosky. Visual programming using structured
dataflow. In Proceedings of the IEEE Workshop on

Visual Languages, 1991.

[11] D. B. Lenat. Eurisko: A program that learns new
heuristics and domain concepts. Artificial Intelligence,
21:61–98, 1983.

[12] D. B. Lenat. Cyc: A large-scale investment in
knowledge infrastructure. Communications of the

ACM, 38(11), November 1995.

[13] T. Moto-oka, editor. Fifth Generation Computer

Systems. North-Holland Publishing Company, 1983.

[14] G. M. Papadopoulos. Implementation of a General

Purpose Dataflow Multiprocessor. LCS TR-432. PhD
thesis, MIT, Laboratory for Computer Science,
August 1988.


