Figure 1: Open Parallellogram

1 The Derivation of the Formula for the Rie-
mann Curvature Tensor in the Presence of
Torsion

The Riemann curvature tensor R(i, ), in a space without torsion, is derived by
applying parallel transport to a vector o, anticlockwise around a parallelogram,
and comparing the result to the original vector. When there is torsion, the
parallelogram doesn’t close and there is an extra edge [¥, @] along which there
has to be additional parallel transport. The value of R(u,¥) does not depend
on the starting point.

Various sources give the value of R(#,7) to be

R(u,v) =[Vg, Vg — Vi, (1)

However, none of the sources I have seen provides a rigorous derivation of
this.

The derivation in what follows is based on the one given in eigenchris’s
Youtube lecture course, and in particular on https://www.youtube.com/watch?v=-
T2FrmJtcQ (Tensor Calculus 22).

In a space with torsion, the Riemann curvature tensor is defined as (see



Figure 1)
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The first term is the correction for torsion. The second term is the torsion-free
term, which we can expand as follows:
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The four difference terms can be converted into covariant derivatives:

w = Vgl = —Vgid (4)
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and the remaining two difference terms can also be converted into covariant
derivatives: . .
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1,7 _ 7
AV”I:—V”“’ — Vi Vsl (10)

Substituting 9 and 10 into 8, the torsion-free term becomes
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The correction for torsion is (cf. 4, 5, 6, and 7, and noting that unlike A, B,
C, or D, FE is a difference of products of # and ¢, and so requires the product
of r and s to normalize)
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Substituting 11 and 12 into 2, yields the definition of the Riemann curvature
tensor. Note that, as r and s tend to zero, the changes A, B, C, D, and F tend
to the identity operator, so no longer appear in the final result.
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or
R(i,¥) = [Va, Vi] + Viag (14)
The first term is unchanged, but the torsion correction has the opposite sign.
Why?
Note that beginning the parallel transport at (0,0) leaves us no better off:
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after substituting @’ for BAw. But now, not only do we still have the +
sign on the V[ 7 term, we have @’ when we should have .



